Evolutionary optimisation of noisy multi-objective problems using confidence-based dynamic resampling
نویسندگان
چکیده
منابع مشابه
Hybrid Dynamic Resampling for Guided Evolutionary Multi-Objective Optimization
In Guided Evolutionary Multi-objective Optimization the goal is to find a diverse, but locally focused non-dominated front in a decision maker’s area of interest, as close as possible to the true Paretofront. The optimization can focus its efforts towards the preferred area and achieve a better result [9, 17, 7, 13]. The modeled and simulated systems are often stochastic and a common method to ...
متن کاملPhylogenetic Inference using Evolutionary Multi-objective Optimisation
Evolutionary relationships among species are usually (i) illustrated by means of a phylogenetic tree and (ii) inferred by optimising some measure of fitness, such as the total evolutionary distance between species or the likelihood of the tree (given a model of the evolutionary process and a data set). The combinatorial complexity of inferring the topology of the best tree makes phylogenetic in...
متن کاملHybrid Dynamic Resampling Algorithms for Evolutionary Multi-objective Optimization of Invariant-Noise Problems
In Simulation-based Evolutionary Multi-objective Optimization (EMO) the available time for optimization usually is limited. Since many real-world optimization problems are stochastic models, the optimization algorithm has to employ a noise compensation technique for the objective values. This article analyzes Dynamic Resampling algorithms for handling the objective noise. Dynamic Resampling imp...
متن کاملEvolutionary Population Dynamics and Multi-Objective Optimisation Problems
Problems for which many objective functions are to be simultaneously optimised are widely encountered in science and industry. These multiobjective problems have also been the subject of intensive investigation and development recently for metaheuristic search algorithms such as ant colony optimisation, particle swarm optimisation and extremal optimisation. In this chapter, a unifying framework...
متن کاملSolving Multi-objective Optimal Control Problems of chemical processes using Hybrid Evolutionary Algorithm
Evolutionary algorithms have been recognized to be suitable for extracting approximate solutions of multi-objective problems because of their capability to evolve a set of non-dominated solutions distributed along the Pareto frontier. This paper applies an evolutionary optimization scheme, inspired by Multi-objective Invasive Weed Optimization (MOIWO) and Non-dominated Sorting (NS) strategi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: European Journal of Operational Research
سال: 2010
ISSN: 0377-2217
DOI: 10.1016/j.ejor.2009.11.003